- #1
farfromdaijoubu
- 3
- 1
How do you derive the position vector in a general local basis?
For example, in spherical coordinates, it's ##\vec r =r \hat {\mathbf e_r}##, not an expression that involves that involves the vectors ## {\hat {\mathbf e_{\theta}}}## and ## \hat {{\mathbf e_{\phi}}}##. But how would you show this?
For example, in spherical coordinates, it's ##\vec r =r \hat {\mathbf e_r}##, not an expression that involves that involves the vectors ## {\hat {\mathbf e_{\theta}}}## and ## \hat {{\mathbf e_{\phi}}}##. But how would you show this?