- #1
ChiralSuperfields
- 1,171
- 132
- TL;DR Summary
- I am interested whether we can get a negative area above the x-axis when the lower limit of integration is larger than the upper limit of integration
Suppose the following integration,
##\int_3^{-1} x^2 \, dx = \frac{1}{3}(-1)^3 - \frac{1}{3}(3)^3 = -\frac{28}{3}##
However, if we have a look at the graph,
The area between ##x = 3## and ##x = -1## is above the x-axis so should be positive. Dose anybody please know why the I am getting negative area from the integral?
Many thanks!
##\int_3^{-1} x^2 \, dx = \frac{1}{3}(-1)^3 - \frac{1}{3}(3)^3 = -\frac{28}{3}##
However, if we have a look at the graph,
The area between ##x = 3## and ##x = -1## is above the x-axis so should be positive. Dose anybody please know why the I am getting negative area from the integral?
Many thanks!