- #1
stuartmacg
- 28
- 6
- TL;DR Summary
- Published CO2 and T data seem to imply unstability.
Looking at some apparently widely accepted data, I understand:
- CO2 mass change => direct "greenhouse" heating is approx linear over ranges considered
- Doubling CO2 (i.e. adding same again) would give 1C change for direct greenhouse.
- CO2 change x1.5 since pre-industrial times (half added), hence direct greenhouse would be 0.5C
- delta T has been observed to be 1C in same period, and attributed to CO2 increase.
- this suggests feedback gain around 1 => nearly unstable heat in-> heat out loop
- heat may generate some net CO2 directly e.g. by warmed sea out gassing
- this would suggest the thermal loop (even without any external forcing) is unstable, gain>1
An unstable Earth might change between 2 saturating temperatures, with little external "forcing". Saturating regions could have loop gains just below 1.
I expect there are flaws in the above, but it would be interesting to find out where.
- CO2 mass change => direct "greenhouse" heating is approx linear over ranges considered
- Doubling CO2 (i.e. adding same again) would give 1C change for direct greenhouse.
- CO2 change x1.5 since pre-industrial times (half added), hence direct greenhouse would be 0.5C
- delta T has been observed to be 1C in same period, and attributed to CO2 increase.
- this suggests feedback gain around 1 => nearly unstable heat in-> heat out loop
- heat may generate some net CO2 directly e.g. by warmed sea out gassing
- this would suggest the thermal loop (even without any external forcing) is unstable, gain>1
An unstable Earth might change between 2 saturating temperatures, with little external "forcing". Saturating regions could have loop gains just below 1.
I expect there are flaws in the above, but it would be interesting to find out where.